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Abstract:

Small animal molecular imaging is a rapidly expanding efficient tool to study
biological processes non-invasively. The use of radiolabeled tracers provides non
destructive, imaging information, allowing time related phenomena to be repeatedly
studied in a single animal. In the last decade there has been an enormous progress in
related technologies and a number of dedicated imaging systems overcome the
limitations that the size of small animal possesses. On the other hand, nanoparticles
(NPs) gain increased interest, due to their unique properties, which make them
perfect candidates for biological applications. Over the past five years the two fields
seem to cross more and more often; radiolabeled NPs have been assessed in
numerous preclinical studies that range from oncology, till HIV treatment. In this
article the current status in the tools, applications and trends of radiolabeled NPs

reviewed.

Keywords: drug release, molecular imaging, small animal imaging, SPECT, PET,

radiolabeled nanoparticles, angiogenesis.
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1. INTRODUCTION

Over the past century imaging became a tool that changed the way medicine thinks
and practices, mainly for diagnostic purposes and over the past twenty years for
therapeutic as well. X-rays gave for the first time the opportunity to obtain
information for body’s interior, with non invasive methods. As technology evolved in
physics, engineering and computer technology, new physical principles were
exploited, resulting to new imaging tools that provided different types of
information. Starting from simple planar anatomical information, three dimensional
functional information can be now obtained and molecular imaging promises to
provide (and in many cases already provides) in vivo information about proteins,
genes, molecules, stem cells; thus mechanisms related to biological processes and
diseases can be studied, with significant benefits, compared to in vitro and ex-vivo
studies [1-3].

Having a quick look in medical imaging progress, we can notice that the more
complicated the physical principles and data acquisition techniques are the more
valuable the obtained information becomes. To explain this statement a simple
example is provided: i) X-ray imaging is based on the idea that X-ray photons pass
through the body, they are attenuated and a detector measures the total
attenuation in the body; thus providing a two dimensional image of the anatomical
attenuation map. ii) Single Photon Emission Computed Tomography (SPECT) is based
on the idea that a radiopharmaceutical is injected in the body and concentrates in an
organ or structure of interest. Radiopharmaceutical carries an isotope (or even
more); the emitted photons pass through a collimator and the detector produces a
two dimensional image of radiopharmaceutical’s distribution, which depends on
target’s functionality. It must be noted here that the disadvantage of using a
collimator is the significant reduction in sensitivity. iii) Positron Emission
Tomography (PET) is based on a similar principle, but the radiopharmaceuticals used
emit positrons; A positron is annihilated in a distance of 1-4mm from each emission
point and two opposite travelling photons are produced. The detector needs to be
able to simultaneously detect those two photons, and a reconstruction algorithm is
necessary to obtain the three dimensional distribution for radiopharmaceuticals

concentration. Very recently the introduction of fast electronics [4] allows time
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information of the two photons to be obtained, thus the annihilation point can be
estimated with better accuracy; theoretically, further improvement in electronics
timing would make reconstruction unnecessary. It is very possible that other physical
processes can lead to more exciting imaging options in the future.

The authors provide a contemporary review of current research in radiolabeled

nanoparticles for targeted in-vivo imaging focusing on modern technology and well-

established applications. In addition, an up to date literature search was performed

to identify novel applications of radiolabeled nanoparticles in various fields of

medicine. Exciting and innovative prospects are highlighted to offer an intriguing

glimpse of the future.

1.1. Molecular imaging with radioisotopes

Many definitions can be given to molecular imaging (Ml). According to Weissleder
and Mahmood [3] “MI can be broadly defined as the in vivo characterization and
measurement of biologic processes at the cellular and molecular level. In
contradistinction to “classical” diagnostic imaging, it sets forth to probe the
molecular abnormalities that are the basis of disease rather than to image the end
effects of these molecular alterations”. A key parameter in Ml is the use of

biomarkers; “Biomarkers are defined as objectively measured, quantitative

parameters of normal and abnormal biological processes that serve as indicative

endpoints guiding safety and efficacy of an experimental compound for potential

drug development [5]”. Biomarkers can be generically described as the molecular

signature of biological systems. The challenge of molecular imaging lies in identifying

a target suitable for highly specific and sensitive imaging. By delivering a target-

specific probe that provides a signal, several imaging modalities can be used to

transform this signal into 2D or 3D images (Figure 1).

Nuclear medicine [6] is one of the most widely spread molecular imaging techniques,
where radioisotope probes are used. The main steps in molecular imaging with
radioisotopes are: i) design of molecules that can target specific receptors ii)
attachment of radioisotopes that emit photons (for SPECT) or positrons (or PET)

without changing the biological properties of target molecules, iii) injection and in
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vivo imaging, by using high resolution and high sensitivity devices. Molecular imaging
is not limited to SPECT and PET. The introduction of contrast agents allow functional
information to be obtained even by using Computerized Tomography (CT),
Ultrasound (US), Magnetic Resonance Imaging (MRI) and the variations of Optical
Imaging. More details about these modalities can be found in a number of

references [7-9].

1.2. SPECT and PET molecular imaging applications

SPECT has specific advantages that make it a challenging tool for many molecular
imaging applications [10]. SPECT can image endogenous ligands such as peptides,
antibodies, hormones and selectins, which are relatively easy labelled with
Technetium (Tc-99m) or other isotopes. Because of their size those molecules diffuse
slowly into tissue and have slow clearance from blood, which can be of the order of
hours or even days. The long half-life of the commonly used SPECT isotopes, allows
their imaging and makes possible imaging of slow processes such as cell division,
infection and inflammatory processes and therapeutic radiopharmaceuticals. It
should not be ignored that the use of long life isotopes make SPECT “affordable” for
a number of research institutions. Finally, SPECT has the unique ability to probe two
or more molecular pathways simultaneously by detecting isotopes with different
emission energies; thus different organs or functions can be monitored in the same
time [11]. This is for example important in order to ensure a constant physiological
state during the experimental observations. Possible applications would be blood
flow and receptor binding for assessment of treatment efficacy in cancer,
neurodegenerative diseases and psychiatric disorders, two different but related
receptors or receptor sub-types, gene expression and functional activity of the
protein for which the gene of interest transcribes.

Initially, small animal imaging applications were focused in tumor imaging for the
development of new diagnostic or therapeutic radiopharmaceuticals as well as
imaging of angiogenesis [12-18]. However, a number of recent publications have
already provided several exciting results, which prove the feasibility of the
abovementioned research directions. In brain ultra-high resolution SPECT has been

used to measure the occupancy of dopamine D2 receptors by a competing drug [19].
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Radiopharmaceuticals for inflammation imaging are available [11]. The gene transfer
using a reporter receptor has been imaged non-invasively using Tc-99m and Re-188
[20]. Results from simultaneous imaging of Tc-99m and [-123 [21], Ga-67 and Tc-99m
[22] have already been published.

PET offers significantly improved resolution when compared with SPECT, and allows
the performance of tomographic dynamic studies, something that is not possible
with clinical SPECT equipment (with the exception of a few prototypes [23]). In
addition, spatial resolution is 4mm in clinical systems and ~1mm in dedicated
preclinical scanners. The combination of high resolution and the ability to carry out
dynamic tomographic studies lead to a number of dedicated PET scanners (both
prototypes and commercial systems). When compared with the SPECT the main
limitation of PET is the use of short life isotopes, something that increases overall
cost, as well as the number of applications that can be imaged with PET isotopes.
Initially PET studies were limited to brain and heart imaging; however when fluorine-
18-fluorodeoxyglucose (FDG) a glucose analogue was introduced in clinical routine
the use of PET for the diagnosis and staging of various malignant tumors covered
almost 95% of clinical PET exams [24, 25]. FDG PET can screen the entire patient for
local recurrence, lymph node metastases and distant metastases during a single
whole body examination using a single injection of activity, with a reported average
sensitivity and specificity of 96% and 77%, respectively [26, 27]. However, there is
increased demand for more cancer specific tracers. A number of positron emitting
isotopes are possible candidates including both isotopes similar to biological
compounds (C-11, N-13, O-15, F-18) or not (Cu-64, Ga-68, Br-76) [28-30]. On the one
hand preclinical research is focused on the development of more specific tracers for
cancer diagnosis. On the other hand these tracers have emerged novel molecular
imaging applications.

3’-deoxy-3’-[18F]-fluorothymidine (FLT) FLT [31] appears to be of high value for
determining response to therapy because cytotoxic chemotherapeutic agents affect
cell division earlier and more prominently than glucose metabolism. The
dopaminergic system in the rat brain is being explored using probes that reflect
dopamine synthesis (e.g., 18F-fluoro-metatyrosine, 18F-FDOPA), D2 receptor binding

(e.g., 11C-raclopride, 18F-fluoroethylspiperone), and dopamine transporter
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concentration (e.g., 11C-CFT) [32]. Gene expression in tumor bearing mice has been
imaged, namely the Herpes simplex virus 1 thymidine kinase (HSV-Tk) gene and the
dopamine type 2 receptor (D2R) gene. Cu-ATSM [33] and the [18F]-EF [34]
compounds appear to be an effective agent for imaging tumor hypoxia. PET has also
been applied to study multidrug resistance and apoptosis (programmed cell death)

[35]. A synoptic comparison of SPECT vs. PET major characteristics is outlined in

Table 1.

1.3. Small animal imaging equipment

Before emphasizing on radiolabeled nanoparticles (RNPs) and their applications it is
necessary to provide some additional information about the considerations that
need to be taken in small animal molecular imaging using radioisotopes and the
options that are available nowadays [36, 37]. First of all small mice are only ~20-
50gr, which means that they are 3000-5000 times smaller than an average human.
Their organs are subsequently much smaller and thus high resolution systems are
necessary, to ensure images with quality that is comparable to that of human
studies. The blood volume of a mouse is only 5ml, which is about 1000 times smaller
than that of a human. This means that the injected dose should be minimized down
to the order of a few pl. ‘In a normal human study 10-30ml are injected with total
activity up to few tenths of mCi; Since in small animals only few hundreds of uCi are
used, it is evident that a preclinical imaging system must have high sensitivity, in
order to be able to produce statistically acceptable images in a reasonable time.
Finally, the heart rate and the respiratory rate of a mouse are about ten times faster
than that of a human. This difference can introduce motion artifacts that have to be
considered and where possible corrected.

The main difference between a small animal imaging system and a clinical system
has to do with its size. Usually, small field of view cameras minimize the distance
between the object to be imaged and the detector, thus providing optimal resolution
and sensitivity. A second difference has to do with the use of more efficient detector
components. Since their cost is usually higher it cannot be justified for application in
general purpose clinical systems but is affordable for small cameras; however,

technological improvements from small animal imaging have inspired the
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construction and applications of prototypes for dedicated organs imaging [38, 39].
The breakthrough in small animal SPECT and PET cameras was the development of
Position Sensitive Photomultiplier Tubes (PSPMTs) [40], were a single
Photomultiplier (PMT) provided position information. Thus, small cameras, based on
one PMT were developed. Research in crystals provided new materials such as LaBr
[41] with improved energy resolution for SPECT and Cerium-doped lutetium
oxyorthosilicate (LSO) and Lutetium-yttrium oxyorthosilicate (LYSO) with improved
sensitivity for PET. Moreover phoswich [42] detectors that are based on of two or
more crystal layers, provides depth of interaction (DOI) information that improves
spatial resolution in PET. New collimator materials and designs have also significantly
improved resolution and sensitivity in SPECT. The progress in electronics is also a key
factor mainly for sensitivity improvement, while continuous research work in the
field of compact and programmable electronics is reducing systems cost.

Nowadays, the trend in small animal imaging is the combination of imaging
modalities, in order to simultaneously have functional information (SPECT or PET)
and anatomical information (CT or MRI) [43, 44]. A number of such systems are now
commercially available by big industries and smaller companies, while a number of
research groups can design and develop low cost prototypes [45, 46]. It appears that
as small animal imaging systems become more and more affordable by small
research groups, new and promising applications will benefit from those tools,

leading to impressive results.

2. RADIOLABELED NANOPARTICLES

2.1. What do nanoparticles offer

Nanotechnology, takes advantage of the special properties of various materials
when they are in the scale of a few nanometers (usually 1-100nm). It is a rapidly
growing research domain with many applications that range from construction
materials to medicine. In the latter case, NP drug delivery is a challenging domain,
which is expected to improve the therapeutic response to anticancer drugs. Since
most of potential therapeutics have poor pharmacokinetics and biopharmaceutical
properties, there is a need to develop suitable drug delivery systems that distribute

the therapeutically active drug molecule only to the site of action, without affecting
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healthy organs and tissues [47]. This possibility will allow reduction of administered
doses, since concentration in target will be optimal. The lower the doses and the
better the targeting will subsequently minimize side effects [48].

Since nanoparticles have a rather small size range they can be injected without
occluding needles and capillaries. This is an obvious benefit in clinical applications;
however, it is more important in small animal imaging studies, where repeated
injections are not always possible due to the small size of mice tail veins that
increase the possibility of bad administration, which will destroy an in vivo study.
This can be rather undesirable, especially when one mouse has to be used for
studies that require repeated injections. Another advantage is the possibility of local
administration in other organs, if injection can be avoided, which is desirable in

some applications.

2.2. Methods for labelling nanoparticles

NPs are synthesized from inorganic or organic material and have desirable
characteristics so that they can accomplish successfully the role of targeted delivery
of drugs which are incorporated into their moieties. In order to visualize the route of
the NPs in vivo, an efficient technique is to label them with a detectable radioactive

probe. Currently, the more frequently used radionuclides for that purpose are *™T

C
Mn, 1) and ®cu [49-51].

Tc-99m and In-111 are radionuclides, which emit gamma radiation and have been
widely used up to now due to their availability and suitable half lives for research
purposes. Radiolabelling of NPs with those radionuclides can be performed with or
without slight modifications of their original structure. Ligands bearing proper
groups in order to bind effectively each radiometal can be conjugated directly on the
surface of an already formed NP, with or without a spacer or can be attached to it
during its synthesis procedure [52, 53]. Common molecules which are suitable for
9MTc |abelling are Histidine (His) residues and 6-Hydrazinopyridine-3-carboxylic acid
(HYNIC) [54, 55] and for In labelling, diethylene triamine pentaacetic acid (DTPA)
and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) [56, 57]. Beside

the abovementioned, various direct labelling methodologies have been applied. The

direct approach is very easy to perform via the direct reduction of the eluate of a
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commercially available *Mo-*"Tc generator with a widely used reducing agent such
as SnCl; [sg.61. One very common problem in the NP radiolabelling procedure is the

interference of colloidal tin oxide particles when the ™

TcO4 reduction is performed
via SnCl,. Therefore either an alternative reducing agent such as NaBH; must be
applied or special attention must be taken during the reduction reaction with SnCl,
162, 63- Finally there is an approach which is less common and it is based on the
encapsulation of already formed radiolabeled complexes within the NPs during their
manufacture [64]. It is prominent to clarify that it is of great importance to use mild
conditions when labelling NPs, such as no great pH range alterations, no constant
and extreme heating, etc, in order to avoid harming the original NP structure and
maintain the initial NP functional properties.

The incorporation of radioiodine to NPs is usually performed through Tyrosine (Tyr)
residues that are somehow present in the NP structure. This is possible if Tyr: a) is a
component of the NP polymer, b) is conjugated into proper NP polymer functions
and c) is present on a protein which is attached on the surface of the NP [65, 66].
Generally in the PET field the most frequently used radionuclides are ¥t and **cu.
Copper-64 is a PET and B emitter so it can be potentially used in PET imaging and
also in therapy [67, 68]. The incorporation of the radiometal in the NP moiety can be
performed through the DTPA and DOTA molecules which have groups that can
efficiently complex ®4Cu. Introduction of '®F to has been problematic because of the
complex and insufficient methods required. Nevertheless feasible ‘®F labelling
approaches have been described [69]. Recently, “click” chemistry has started being
applied for the attachment of groups to various biomolecules including NPs, because
of its simplicity, adequacy and mildness [70, 71].

The commonly used method for quality control of the produced RNPs is the Instant
Thin Layer Chromatography (ITLC), which has the advantage of being very quick and
easy to use. A more accurate method that can be utilized is the High Pressure Liquid
Chromatography (HPLC) using either a reverse phase (RP-HPLC) or a size exclusion
column (SE-HPLC) depending on the NPs size and characteristics. The eluate systems
used in the above methods may vary depending on the radionuclide and the
methodology used for labelling and often a combination of the two methods or of

different eluate systems of the same method may be needed in order to determine
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effectively the radiochemical purity [49, 54, 56, 57, 69]. A graphical representation of

the basic structural components of NPs is depicted in Figure 2.

3. APPLICATIONS

Till recently few imaging studies with RNPs were reported. However, their number is

rapidly increasing and is expected to increase even more, since more and more

groups select small animal in-vivo imaging for pre-clinical investigations. radiolabeled

In the following paragraphs a number of in vivo studies where RNPs have been used

are summarized. The paragraphs are grouped according to the type of application or

NPs used. To identify relevant studies literature databases including PubMed,

Embase and Scopus were searched for combinations of the following terms:

“radiolabeled”, “nanoparticles’”’, “nanomedicine”’, “molecular imaging’’, “tracers”

and “in vivo”. Only articles that contain in vivo imaging results and not just

biodistribution studies were considered. In each case the type of NPs, radioisotope,

imaging modality and conditions, and finally application, are reported.

3.1. Nanoparticles in oncology

Bartlett et al. [72], employed PET/CT to monitor whole-body biodistribution kinetics
and tumor localization of siRNA NPs. Tf-targeted and nontargeted siRNA NPs were
formed by using cyclodextrin-containing polycations. NPs were labelled using Cu-64
and the 64Cu-DOTA-siRNA, Tf-targeted NPs systems were injected in mice. Rapid
blood clearance through liver accumulation and kidney filtration into the bladder
was observed. The tissue distribution of the 64Cu-DOTA-siRNA delivered by Tf-
targeted and nontargeted NPs was very similar for the first hour after injection, with
similar blood clearance and tumor accumulation.

Schluep et al. [73] investigated IT-101, a cyclodextrin polymer-based NP containing
camptothecin, for cancer treatment using PET. The NPs comprise of a CDP conjugate
of the drug camptothecin (CPT), their diameter is 30-40 nm and they have been
labelled with Cu-64. MicroPET (Focus 220 PET scanner, Siemens) imaging was carried
out at 4 h and 24 h post injection. Data were acquired for 60min. Time concentration

curves show that in most organs radiation decreases in parallel with plasma;
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however, tumor concentration increases over time and crosses plasma
concentration level at 24 h after injection. At that time percentage in tumor is
10+1.1%, while compared to the 4.6+0.7% in the first 6h post injection. An important
feature of this work the modelling of tumor uptake of 64Cu-labeled IT-101 using a 3-
compartment model incorporating low molecular weight and nanoparticulate label.

Early PET imaging of pancreas cancer and more specifically KRAS protein was
assessed [74]. A Mosaic MicroPET was used and images were obtained 24 h post
injection. Most of the radioactivity appears in the central region of the xenograft,
which indicates that overexpression of the activated KRAS mRNA was concentrated

in the center of the tumors.

3.2. Nanoparticles in lungs imaging

Kennel et al. [75], studied mouse lung endothelium using CdTe/ZnS RNPs. In vivo
SPECT/CT imaging experiments were carried out in order to visualize the
biodistribution of the targeted and control antibody conjugates (NP-mAb). Two mice
groups, one (control) injected with NP coupled to control antibody and the second
injected with ZnS/Cd125mTe NP targeted with mAb 201B were imaged with a

Siemens dual-modality SPECT/MicroCAT Il scanner at day one post injection. Results

were confirmed by autoradiography studies. In the control group images showed

significant accumulation of NPs in the spleen and liver and limited accumulation in
the lung cavity. However, in the second group, NPs targeted with mAb 201B were
mainly concentrated in the lung and much lower activity was observed in liver and
spleen. The authors suggested that those systems can find possible applications in
radioimmunotherapy, as well as in medical diagnostic imaging.

Another area of interest is the use of inhaled NPs. Semmler-Behnke et al. [76],
studied the disappearance of NPs from the epithelium by sequential lung retention
and clearance and bronchoalveolar lavage (BAL) measurements in rats. Following the
intratracheal inhalation of iridium-192 (192Ir)—RNPs, SPECT imaging was carried out;
however rats were not imaged in vivo, but lungs were removed and placed under
the camera. The studies shown that NPs are much less phagocytized by alveolar
macrophages (AMs) than large particles but are effectively removed from the lung

surface into the interstitium. A clinical gamma camera equipped with a pinhole
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collimator was used in this study, which has limitations in small animal imaging. The
use of a small camera optimized for the 310keV of Ir-192, would make more feasible
the repetition of studies in the same animal, since its long half life (73.83 days) make

it an ideal candidate for imaging even for a one year period.

3.3. Nanoparticles in HIV

The application of RNPs in antiretroviral therapy (ART), has been suggested by Dou
et al. [77, 78]. The goal of this group’s work was to design a novel bone marrow—
derived macrophage (BMM) pharmacologic NP delivery system for effective
antiretroviral delivery. Because of the small size of the NPs and their highly stable
nature, NPs could be packaged within macrophages for subsequent systemic
trafficking and sustained drug distribution. As a result, this system has the potential
to improve drug distribution to areas of active viral replication, and extend dosing
intervals. Indinavir (IDV) nanosuspension was loaded into BMMs and then
administered intravenously into naive mice. BMMs were labelled with In-111 and
then cell tissue distribution was tracked with SPECT. Pharmacokinetic behaviour and
immune and antiretroviral activities were monitored after HIV-1ADA infection and a
single dose of NP indinavir-loaded BMMs (NP-IDV-BMMs). Sustained antiretroviral
therapeutic responses with concomitant immune reconstitution were seen up to 14
days. Mice were tomographically imaged using a high resolution gamma camera,
with a 1-mm pinhole collimator; 64 projections from 0° to 360° were obtained in
1min intervals. Quantitative analysis of BMM density from tomographic images
showed significant accumulation of radiolabeled BMMs in lung at six hours after
adoptive transfer compared with other tissues (spleen, liver, and kidney). By day 1,
radiollabeled BMMs were significantly diminished from lung with concomitant
increases in liver and spleen. BMM levels in liver and spleen remained relatively
constant, but not significantly different from days 1 through 7. This work showed an
excellent combination of nanotechnology, radiobiology and molecular imaging for

application in a peak research topic, such as HIV therapy.

3.4. Hydroxyapatite nanoparticles (HNPs)
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Hydroxyapatite (Caio(PO4)s(OH),, HA) is biocompatible and has been explored in a
number of biomedical applications, such as orthopaedic implants [79], sustained
drug release systems [80], radiation therapy of arthritis [81], drug or DNA delivery
systems [82] and others. Labelling hydroxyapatite NPs (HNPs) with Tc-99m-
methylene-diphosphonate, allows to non-invasively follow HNPs, by using SPECT
imaging. Ong et al. [83] synthesized HNPs by wet chemical precipitation, using
calcium nitrate tetrahydrate and ammonium dihydrogen phosphate. The size of
HNPs was 40nm, 100nm and 200nm. Then HNPs were radiolabeled with HNPMDP-
Tc99m and imaged 2h post injection with a hybrid SPECT/CT system. Images and
analysis of imaging data showed that HNPMDP-Tc99m was rapidly cleared from the
blood circulation regardless of particle size. About 10% of injected dose was still in
circulation at 10 min post-injection but only 0.6—0.7% remained after 2 h. The largest
concentration was observed in liver and presence in the kidney, lung, and heart were
negligible. The authors suggest that several clinically available bisphosphonate drugs
or phosphonate labelled and loaded HNPs could be useful for targeted delivery of

radiation and/or drugs to the liver or cancer cells at other locations.

3.5. Nanoparticles in reticuloendothelial system imaging

Radiolabeled quantum dots were used by Kennel et al. [75] to study the competition
between efficient vascular targeting and interaction of the NP with the
reticuloendothelial (RE) system, which is the major source of particulate uptake and
clearance in the body. CdTe NPs were prepared with natural cold Te (cold) or with a
mixture of Te-125m/Te-124 (stable). The CdTe NPs were capped with ZnS to reduce
leaching and with mercaptoacetic to provide a functional group for attaching a
targeting monoclonal antibody MAb 201B (MAb). MAb 201B binds to murine
thrombomodulin expressed in the lumen of lung blood vessels. As control MAb 33
was used. Whole-body micro-SPECT/CT images were collected using microCAT
[1+SPECT dual modality platform (Siemens Preclinical Imaging, Knoxville, TN). Forty-
five projections were acquired with an 8° step for a period of 60 sec per projection.
Both targeted with MAb 201B and control MAb 33 mice were imaged at day 1 post
injection of the targeted NPs. SPECT images show a predominance of 125mTe in the

lungs with some in spleen and a trace detected in liver. On the other hand, the
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images of the control animal show that almost all the 125mTe is concentrated in

liver and spleen.

3.6. Quantum Dots

The quantitative biodistribution of commercially available CdSe quantum dots (QD)
in mice was studied by Schipper et al. [84] PET imaging with Cu-64 was selected as a
tool to non invasively follow radiolabeled QDs and provide information about their
spatiotemporal distribution. Several compounds were prepared and in vivo tested;
64Cu, 64Cu-DOTA, 64Cu-DOTAQD525, 64Cu-DOTA-QD800, 64Cu-DOTA-QD525PEG
and 64Cu-DOTA-QD800PEG. Anaesthetized mice were imaged by a microPET R4
scanner (Siemens Medical Solutions USA, Inc.). The imaging protocol included
several series of scans; In the first 10 min post injection, dynamic 10 sec time frames
were, to monitor fast phenomena. Then 5 min static acquisitions were performed at
10 min, 60 min, 4.5 h, 12 h, and 36 h post injection. Regions of interest were drawn
in various organs. An initial peak in heart and lung uptake, was observed in the first
moments, something which is expected from blood-pool activity. QD525PEG and
QDS800PEG were mainly concentrated in liver and less in spleen and bone and other
organs showed low activity, till the end of the study. Figure 3 shows typical images of

the six tested compounds.

3.7. Epoxypropylmethacrylate (EPMA) nanoparticles

EPMA  (poly-glycidylmethacrylate  (poly-2,3-epoxypropylmethacrylate)  finds
applications in the field of artificial organs or implants [85]. EPMA NPs consist of a
compact latex core with a water-soluble corona composed of protuberant linear
polymethacrylic acid strands [86]. Cartier et al. [87], labelled EPMA NPs with two
different tracers; In-111 and Ga-68. EPMA-based NPs are easily synthesized by
emulsion copolymerization, allowing the production of NPs that differ in size,
polymer hydrophilicity and surface coverage with functional groups. Radiolabelling
was done directly, without the necessity of a chelating conjugate. All animal
experiments were carried out in anaesthetized rats. Ga-68 labelled NPs were imaged

in @ MOSAIC animal PET scanner, 15 min post injection. Images showed localization
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in the heart and also in the liver. Lower concentration was visible in the spleen.

However, no signal was detected in the kidney, something which probably implies
that there is no significant renal elimination of the tracer. Scintigraphic studies were
carried out with In-111 labelled NPs 15 min and 1h post injections. In the first 15
min, 75% of the injected activity was found in the blood and 21% in the liver. After 1
h 45% remained in the blood and 40% was located in the liver, something that
indicates increased clearance over time by the liver. Low radioactivity is observed in
the kidney. EPMA NPs can be labelled with other tracers such as, Tc-99m, Ga-67 and
I-23 for SPECT and Cu isotopes for PET.

3.8. Nanoparticles in cardiovascular diseases

Nahrendorf et al. [67], labeled Dextranated and DTPA-modified magnetofluorescent
NPs with Cu-64, for Macrophages in Inflammatory Atherosclerosis. MION NPs
(monocrystalline iron oxide nanoparticle), labelled with Cu-64 resulted to Cu-64
DTPA NPs. Using FLEX X-PET/X-O micro PET-CT (Gamma Medica lIdeas, Inc,
Northridge, Calif) apoE'/' mice were scanned in two steps; Initially 1 hour after
injection of 18-FDG. On the following day 64Cu-TNP IV were administered and
imaged at 24 hours post injection. A strong PET signal was obtained from the aortic
root and arch with a 5.1+0.9 target to background ratio in the aortic root. The
anatomical information provided by the PET/CT and the administration of an
iodinated CT contrast agent, allowed to identify those structures in functional
images. PET signal was obtained only by apoE'/' mouse but not by wild-type mice.
64Cu-TNP provided 50% higher uptake values (SUV) when compared to the standard
18-FDG. An additional benefit of 64Cu-TNP is its trimodal character, which allows
complementary MRI imaging and probe validation by fluorescence-based techniques

on the cellular and molecular level.

3.9 Nanoparticles in angiogenesis

Angiogenesis refers to the formation of new blood vessels and is implicated in a

variety of normal and pathologic inflammatory and cancerous conditions. Advances

in hanotechnology are transforming our knowledge of angiogenesis and may permit

therapeutic manipulation of the phenomenon on a nanoscale in the future.
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Molecular imaging of integrin expression represents a recent scientific breakthrough

in the detection and therapeutic targeting of cancer [88-91]. Integrins are expressed

both on tumor cells and activated proliferating endothelial cells and facilitate tumor

cell invasion, angiogenesis and metastasis. Radiolabeled tracers targeting a,f3

integrin expression were recently introduced for SPECT imaging including 18

galacto-RGD [92], **'In-RP747 [93] and *mTc-NC100692.

Of special interest, dual-function imaging techniques are emerging. Contrast-agents

used for targeted imaging of surface cell molecules may be further modified and

employed for direct selective drug delivery [94]. Appropriately designed NPs could

combine contrast agents and drug therapy permitting simultaneous cancer imaging

and treatment. For example, liposomal NPs that bind o,B3 integrin have been

successfully used to deliver a mutant Raf gene and induce endothelial cell apoptosis

in a preclinical tumor model [95]. Nanotechnology and engineering of novel NPs like

biodegradable micelles, semiconducting nanodots and iron-oxide nanocrystals may

revolutionize the study and therapeutic manipulation of angiogenesis. Biological

camouflage of the NPs with appropriate coatings may help them evade

immunological attack and early destruction [96]. For example, external lipid

pegylation of the NPs prevents their early removal by the reticuloendothelial system

and enhances their circulation half-life [97].

Gadolinium-labelled NPs engineered from lipids, such as liposomes or micelles, or

carbon nanotubes, are excellent contrast agents for MR imaging because of

gadolinium’s paramagnetic properties [95]. Paramagnetic NPs have been applied for

the detection of tumoral neovascularization and inflammatory angiogenesis of

atheromatous plague producing a high signal-to-noise ratio [98-100].

4. PROSPECTIVE

Although the number of papers related to RNPs continuously increases, at the
moment most of the published studies do not use in vivo small animal imaging. One
reason for this could be the resources necessary to obtain and maintain imaging
facilities. At the moment even more conventional studies that do not use NPs, do not

proceed to in vivo imaging. However, as stated in this article, low cost prototypes
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can provide accurate dynamic scintigraphic data [101] and in some cases even
tomographic data. As they become more and more popular and economically
affordable, it is expected that in the next years a number of studies that have been
carried out using radioisotopes and post mortem biodistributions will be repeated in
vivo.

A very nice summary of studies with RNPs [102] has shown that many groups using
RNPs in various fields could extend their work and benefit from the use of imaging
tools. We believe that imaging RNPs will emerge as one of the major directions in
molecular imaging due to the additional capability to use NPs for bi- or multimodal

imaging. One of the most promising fields related to cancer diagnosis and therapy is

angiogenesis, where it is expected that RNPs will play a critical role for early

diagnosis and/or targeted therapy and treatment monitoring. It appears that

imaging RNPs is in the very beginning and in the next years several impressive results

are to be expected with a strong and significant impact on preclinical and clinical

research.
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Captions to figures:

Figure 1: Graph illustrating the major contributing role of molecular imaging, along

with genomics, proteomics, metabolomics, and radiogenomics in the evolution of

modern biology and medicine towards the convergence diagnostics and therapeutics

i.e. theragnostics [103-105].

Figure 2: Graph illustrating an example structure of a targeted nanoparticle. Surface

ligands are engineered to probe specific cell membrane receptors with a high

specificity. Contrast payloads may include, but not limited to, a radiolabeled tracer

(i.e. T¢®®™), an iodinated contrast compound (lodine), a Gadolinium chelate (Gd*®) for

concurrent high resolution anatomical imaging with either Computed Tomography

or Magnetic Resonance Imaging apparata, or a combination thereof. Finally,

nanoparticles may carry agents (i.e. drug or DNA/RNA) for targeted pharmaceutical

or gene therapy on the cellular level.

Figure 3: In vivo PET images of mice injected with 64Cu (first column), 64Cu-DOTA
(second column), QD525 (third column), QD525PEG (fourth column), QD800 (fifth
column), or QD80OPEG (sixth column). During dynamic image acquisition, 5.55 MBq
of the respective agent were injected into tail vein of nude mice. Images were
acquired dynamically in 10-s frames for the first 10 min and one 5-min frame
thereafter. Coronal (upper row), sagittal (middle row), and transverse (lower row)
slices of a 5-min frame from 10 to 15 min after injection are shown (reproduced with

permission from [84]).



Table 1: SPECT and PET major properties

Table 1. Single Photon Emission Tomography (SPECT) Positron Emission Tomography (PET)
Principle of Detection of a single photon after tracer uptake. Detection of photon pair after tracer uptake. PET tracers emit
function SPECT tracers emit photons of different energies, positrons of different kinetic energies, which annihilate with a

Tracers (Half life in

ranging from ~70keV up to ~300keV

Mainly diagnostic:

minutes, hours or

Tc-99m (6.01h, 140keV)

days; For SPECT
isotopes photons

[-123 (13.3h, 159keV)
In-111 (2.8d , 171keV & 245keV)

energy. For PET
isotopes positrons

Th-201 (3.04d, 70-80keV & 167keV)
Mainly therapeutic:

maximum kinetic

Ga-67 (3.26d, 93keV & 185keV & 300keV)

energy[

Spatial Resolution

Re-188 (16.9h, 159keV)
Sm-153 (1.94d, 103keV)
5-8mm in clinical systems

Sensitivity
(Percentage of

photons detected

1-2mm in preclinical systems

Lower limit determined by collimator dimensions,

penetration and scattering
~0.01%

Sensitivity mainly determined by collimator shape

and number of heads

over photons
emitted)

Types of
acquisition and

Planar imaging with static head(s).

Few seconds for dynamic studies up to few minutes

free electron and produce two antiparallel photons with energy
511keV, independent of their kinetic energy

0-15 (2.05m, 1.7MeV)
N-13 (9.9m, 1.19MeV)
F-18 (109.8m, 0.64MeV)
C-11 (20.4m, 0.96MeV)
Ga-68 (68.4m, 1.9MeV)
Cu-64 (12.7h, 0.58MeV)

4-5mm in clinical systems

~1mm in preclinical systems
Lower limit determined by positron range, photons non
colinearity and scattering

Up to 10%
Sensitivity mainly determined by humber of detector modules,
acceptance angle and 2D or 3D acquisition

Planar coincidence imaging with static opposite heads
(dedicated PET systems)




indicative
acquisition time

for static scintigraphic studies
Tomographic imaging with rotating head(s).

Few seconds per projection and up to 30 minutes

Few seconds in dynamic studies up to few minutes for static
coincidence studies
Tomographic with no heads rotation and limited angle

for an entire SPECT, depending on the humber of

reconstruction (dedicated PET systems)

heads. 2D or 3D reconstruction.

Few minutes or even few seconds (but with low statistics)
Tomographic imaging with rotating heads (dedicated PET

systems[

Few minutes depending on number of heads and projection
angles

Tomographic imaging with ring scanner
Few minutes or even few seconds (dedicated PET systems).
Up to 30min for whole body clinical studies with more than
one bed positions

Cost Relatively low cost instrumentation. Availability of More expensive instrumentation. Need of dedicated cyclotron
long lived radioisotopes. for short lived radioisotopes, which raises overall cost.

Clinical Myocardial ischemia, thyroid imaging, oncology, Oncology, brain imaging

applications

Pre-clinical in vivo  Oncology, lungs endothelium, HIV study, orthopaedic = Oncology, implants, cardiovascular diseases

imaging implants, drug release, reticuloendothelial system,

applications using

angiogenesis study, implants

nanoparticles
Advantages

Disadvantages

Use of more than one isotopes for simultaneous
imaging of more than one tracers/mechanisms
Easily accessible (in equipment and
radiopharmaceuticals)

Long lived isotopes that allow in vivo monitoring of

Possibility to carry our dynamic tomographic studies
Relatively high sensitivity

Whole body imaging

Radiopharmaceuticals that are structural elements of
animal/human

slow processes
Low sensitivity and limited spatial resolution

High cost equipment and radiopharmaceuticals




Only planar dynamic studies are possible Short lived isotopes that allow monitoring of relatively fast
mechanisms




